Complex Dynamics and Chaos in Electronic Circuits

Paul P. Sotiriadis

Professor & Director Electronics Laboratory

Nikolaos Voudoukis

Reasearch Associate, Ph.D. Electronics Laboratory

Department of Electrical and Computer Engineering National Technical University of Athens

26th Summer school on DYNAMICAL SYSTEMS AND COMPLEXITY

July 16th 2019

Chaos In Electronic Circuits

Good or bad ?

Lets examine a few cases ...

Chaos Used in Communication Systems

Modulator.

Chaotic Signal Used

• As a carrier

For encryption / secure communication

Good

<u>REF</u>: Yang, Hua, and Guo-Ping Jiang. "Highefficiency differential-chaos-shift-keying scheme for chaos-based noncoherent communication." IEEE Transactions on Circuits and Systems II: Express Briefs 59.5 (2012): 312-316.

Receiver structure.

Chaos Appearing In Phase-Locked Loops (PLL)

Bad

Chaos Appearing In Automatic Gain Control (AGC) Loops

Bad

If Chaotic behavior appears

- It contaminates the output signal with multiplicative "noise"
- It may be catastrophic for the operation of the system the VGA is part of

<u>REF</u>: Chang, F-J., S-H. Twu, and S. H. Y. A. N. G. Chang. "Global bifurcation and chaos from automatic gain control loops." *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications* 40.6 (1993): 403-412.

Chaos Appearing In Good or Bad Micro-Electro-Mechanical (MEM) Devices

The schematic diagram of the parallel-reduction tunable oscillator.

Chaotic behavior may be deliberate or accidental

- bad / Good depends on Application
- In the REF a Chaotic generator is presented

<u>REF</u>: Wang, Yongmei Cindy, et al. "Chaos in MEMS, parameter estimation and its potential application." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 45.10 (1998): 1013-1020.

Chaos Appearing In DC to DC Converters

Bad

If Chaotic behavior appears (with the exception of deliberate chaotic behavior for spectrum spreading)

- Will contaminate supply voltage with "noise"
- If oscillation too large it may damage the converter / the circuits it powers / the power source

<u>REF</u>: El Aroudi, Abdelali, et al. "Hopf bifurcation and chaos from torus breakdown in a PWM voltage-controlled DC-DC boost converter." IEEE Trans. on Cir. and Syst. I: Fundamental Theory and Applications 46.11 (1999): 1374-1382.

Chaos Used In Counterfeiting Counter-measures

Trusted Zone

Use Chaotic behavior to

- Create a specific ID for each Chip + Package + PCB
- Use ID against malicious counterfeiting

<u>REF</u>: Miura, Noriyuki, et al. "Chip-Package-Board Interactive PUF Utilizing Coupled Chaos Oscillators With Inductor." IEEE Journal of Solid-State Circuits 53.10 (2018): 2889-2897.

26th Summer school on DYNAMICAL SYSTEMS AND COMPLEXITY

Good

Chaos Appearing In Good or Bad Certain Classed of Neural Networks

Chaotic behavior can

- Work as perturbation leading to a better local optimum
- Or, can lead to instability

<u>REF</u>: Lu, Hongtao, Yongbao He, and Zhenya He. "A chaos-generator: Analyses of complex dynamics of a cell equation in delayed cellular neural networks." IEEE Transcactions. on Circuits and Systems I: 45.2 (1998): 178-181.

Chaos Appearing In Sigma-Delta Modulators

Chaotic behavior is "desirable" as part of the goal to

- To "break" periodic patterns (work as random dithering)
- "Spread" the PSD of the quantization noise (outside of the signal's Bandwidth)

<u>REF</u>: Risbo, Lars, and John Aasted Sørensen. "Sigma-delta modulators-stability analysis and optimization." (1995).

Good

Chaos Used In Sound Synthesis

(Φαγκότο)

Good

Use of Chua's circuit

Use Chaotic behavior to

- Synthesize instrument sounds
- Synthesize nature's sounds

Bassoon: spectrum of entire range

<u>REF</u>: Johnson, Kimo, and NEW HAMPSHIRE DURHAM. "Controlled chaos and other sound synthesis techniques", BS degree Thesis(2000).

Chua's CHAOTIC Circuit

A Practical View

Chua's Chaotic Circuit

- **1.** The basic circuit consists of :
 - two capacitors C1, C2
 - one inductor L
 - one resistor R
 - one nonlinear element resistor NR.
- The parallel combination of C2 and L constitutes a lossless resonant circuit. The resistance R provides the coupling between this, the active nonlinear resistor NR, and C1.
- 3. Resistance R is a trimming parameter of the circuit

Chua's Chaotic Circuit Nonlinear Resistance

State Differential Equations

$$C_{1} \frac{dV_{C1}}{dt} = \frac{V_{C2} - V_{C1}}{R} - f(V_{C1})$$

$$C_{2} \frac{dV_{C2}}{dt} = \frac{V_{C1} - V_{C2}}{R} + i_{L}$$

$$L \frac{di_{L}}{dt} = -V_{C2}$$

Practical Implementation

Practical Implementation Typical Component Sizes

R=2.2 kΩ (pot.)	C=100 nF
R ₁ =220 Ω	C ₁ =10 nF
R ₂ =220 Ω	C ₂ =100 nF
R ₃ =2.2 kΩ	
R ₄ =22.0 kΩ	L=15 mH
R ₅ =22.0 kΩ	
R ₆ =3.3 kΩ	
R ₇ =100 Ω	
R ₈ =1.0 kΩ	
R ₉ =1.0 kΩ	
R ₁₀ =10 kΩ (pot.)	

Gyrator: Passive, Linear, Lossless, 2-Port Network Can emulate inductive behavior using only capacitors

$$L = \frac{R_7 R_9 R_{10} C}{R_8}$$

Transient and Phase Space [Circuit] $R = 1.90 k\Omega$

- The transient waveform has **one** oscillation cycle
- The trajectory in phase space encircles the attractor **once**.

Transient and Phase Space [Circuit] $R = 1.87 k\Omega$

- The transient waveform has **two** oscillation cycles
- The trajectory in phase space encircles the attractor twice

Transient and Phase Space [Circuit] $R = 1.85 k\Omega$

- The transient waveform has **four** oscillation cycles
- The trajectory in phase space encircles the attractor four times

Transient and Phase Space [Circuit] $R = 1.80 k\Omega$

- The transient waveform is **not** periodic
- The trajectory in phase space encircles the attractor **infinite times**

Transient and Phase Space [Circuit] $R = 1.70 \text{ k}\Omega$

- The attractor becomes double-scroll
- The transient waveforms of Vc2(upper part) and Vc1(lower part) are shown

Phase Space Chaos : Simulation

[Circuit] [Simulation]

Phase Space Chaos : Measurement

[Circuit]

[Measurements]

2.00V/ ХΥ 1.00V/ 2 1<u>†</u> KEYSIGHT TECHNOLOGIES Acquire Time Mode XY Acq Mode Ð Normal DC RMS - FS(M): Freq(1): AC RMS - Cyc(M): Ampl(M): No edges No signal No signal No signal

Phase Space Chaos : Theory

Phase Space Chua's Chaos: Theory, Simulation, Measurements

Theory

Simulation

Demonstration Chua's CHAOTIC Circuit LIVE!